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Collider PhysicsLecture IV: W and Z production at NLO – p.3/35



Multiplicity growth

Di(x, t) = Di(x, t0) +
X

j

Z 1

x

dz

z

Z z2t

t0

dt′

t′
αS

2π
Pji(z, αS)Dj(x/z, t′) ,

or in differential form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pji(z, αS)Dj(x/z, z2t) .

Notice that this differs from the conventional evolution equation only in the z-dependent

change of scale on the right-hand side.

consider first the solution of taking αS fixed and neglecting the sum over different

branchings. Then we have

t
∂

∂t
D̃(j, t) =

αS

2π

Z 1

x

dz zj−1P (z)D̃(j, z2t) .

we try a solution of the form

D(j, t) ∝ tγ(j,αS)
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Resummed anomalous dimension
we find that the anomalous dimension γ(j, αS) must satisfy the implicit equation

γ(j, αS) =
αS

2π

Z 1

0
dz zj−1+2γ(j,αS)P (z) .

γgg(j, αS) =
CAαS

π

1

j − 1 + 2γgg(j, αS)

γgg(j, αS) =
1

4

"r
(j − 1)2 +

8CAαS

π
− (j − 1)

#

=

r
CAαS

2π
− 1

4
(j − 1) + . . . .

at any fixed j 6= 1 we can expand in a different way for sufficiently small αS

γgg(j, αS) =
CAαS

π

1

(j − 1)
− 2

„
CAαS

π

«2 1

(j − 1)3
+ . . . .

This series displays the terms that are most singular as j → 1 in each order.
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Multiplicity growth II

we can introduce running α by writing

D̃(j, t) ∼ tγgg(j,αS) = exp
hR t γgg(j, αS) dt′

t′

i
.

we replace γgg(j, αS) in the integrand by γgg(j, αS(t′)).

Z t

γgg(j, αS(t′))
dt′

t′
=

Z αS(t) γgg(j, αS)

β(αS)
dαS , β(αS) = −bα2

S + . . . .,

〈n(s)〉 ∼ exp[
1

b

s
2CA

παS(s)
] ∼ exp

r
6

πb
ln

s

Λ2
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Hadron-hadron processes

In hard hadron-hadron scattering, constituent partons from each incoming hadron

interact at short distance (large momentum transfer Q2).
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For hadron momenta P1, P2 (S = 2P1 · P2), form of cross section is

σ(S) =
X

i,j

Z
dx1dx2Di(x1, µ2)Dj(x2, µ2)σ̂ij(ŝ = x1x2S, αS(µ2), Q2/µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross section for parton

types i, j.

? Notice that factorization scale is in principle arbitrary: affects only what we call

part of subprocess or part of initial-state evolution (parton shower).

? Unlike e+e− or ep, we may have interaction between spectator partons,

leading to soft underlying event and/or multiple hard scattering.
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Factorization of the cross section
Why does the factorization property hold and when it should fail?

For a heuristic argument Consider the simplest hard process involving two hadrons

H1(P1) + H2(P2) → V + X.

Do the partons in hadron H1, through the influence of their colour fields, change

the distribution of partons in hadron H2 before the vector boson is produced? Soft

gluons which are emitted long before the collision are potentially troublesome.

A simple model from classical electrodynamics. The vector potential due to an

electromagnetic current density J is given by

Aµ(t, ~x) =

Z
dt′d~x′ Jµ(t′, ~x′)

|~x − ~x′| δ(t′ + |~x − ~x′| − t) ,

where the delta function provides the retarded behaviour required by causality.
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Consider a particle with charge e travelling in the positive z direction with constant

velocity β. The non-zero components of the current density are

Jt(t′, ~x′) = eδ(~x′ − ~r(t′)) ,

Jz(t′, ~x′) = eβδ(~x′ − ~r(t′)), ~r(t′) = βt′ẑ,

ẑ is a unit vector in the z direction. At an observation point (the supposed position

of hadron H2) described by coordinates x, y and z, the vector potential (either

performing the integrations using the current density given above, or by Lorentz

transformation of the scalar potential in the rest frame of the particle) is

At(t, ~x) =
eγ√

[x2 + y2 + γ2(βt − z)2]

Ax(t, ~x) = 0

Ay(t, ~x) = 0

Az(t, ~x) =
eγβ√

[x2 + y2 + γ2(βt − z)2]
,

where γ2 = 1/(1 − β2). Target hadron H2 is at rest near the origin, so that

γ ≈ s/m2.
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Note that for large γ and fixed non-zero (βt− z) some components of the potential

tend to a constant independent of γ, suggesting that there will be non-zero fields

which are not in coincidence with the arrival of the particle, even at high energy.

However at large γ the potential is a pure gauge piece, Aµ = ∂µχ where χ is a

scalar function

Covariant formulation using the vector potential A has large fields which have no

effect.

For example, the electric field along the z direction is

Ez(t, ~x) = F tz ≡ ∂Az

∂t
+

∂At

∂z
=

eγ(βt − z)

[x2 + y2 + γ2(βt − z)2]
3

2

.

The leading terms in γ cancel and the field strengths are of order 1/γ2 and hence

of order m4/s2. The model suggests the force experienced by a charge in the

hadron H2, at any fixed time before the arrival of the quark, decreases as m4/s2.
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Lepton-pair production

Mechanism for Lepton

pair production,

W -production,

Z-production,

Vector-boson pairs, . . .

Collectively known as the

Drell-Yan process.

Colour average 1/N .

dσ̂

dQ2
=

σ0

N
Q2

q δ(ŝ − Q2), σ0 =
4πα2

3Q2
, cf e+e− annihilation.

In the CM frame of the two hadrons, the momenta of the incoming partons are

p1 =

√
s

2
(x1, 0, 0, x1), p2 =

√
s

2
(x2, 0, 0,−x2) .

Collider PhysicsLecture IV: W and Z production at NLO – p.11/35



The square of the qq̄ collision energy ŝ is related to the overall hadron-hadron collision

energy by ŝ = (p1 + p2)2 = x1x2s. The parton-model cross section for this process is:

dσ

dM2
=

Z 1

0
dx1dx2

X

q

{fq(x1)fq̄(x2) + (q ↔ q̄)} dσ̂

dM2
(qq̄ → l+l−)

=
σ0

Ns

Z 1

0

dx1

x1

dx2

x2
δ(1 − z)

2
4
X

q

Q2
q {fq(x1)fq̄(x2) + (q ↔ q̄)}

3
5 .

For later convenience we have introduced the variable z = Q2

ŝ
= Q2

x1x2s
.

The sum here is over quarks only and the q̄q contributions are indicated explicitly.
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Next-to-leading order

The contribution of the real diagrams (in four dimensions) is

|M |2 ∼ g2CF

"
u

t
+

t

u
+

2Q2s

ut

#
= g2CF

"“1 + z2

1 − z

”“−s

t
+

−s

u

”
− 2

#

where z = Q2/s, s + t + u = Q2.

Note that the real diagrams contain collinear singularities, u → 0, t → 0 and soft

singularities, z → 1.

The coefficient of the divergence is the unregulated branching probability P̂qq(z).

Ignore for simplicity the diagrams with incoming gluons.
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Control the divergences by continuing the dimensionality of space-time,

d = 4− 2ε, (technically this is dimensional reduction). Performing the phase space

integration, the total contribution of the real diagrams is

σR =
αS

2π
CF

 
µ2

Q2

!ε

cΓ

"“ 2

ε2
+

3

ε
− π2

3

”
δ(1 − z) − 2

ε
Pqq(z)

− 2(1 − z) + 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

with cΓ = (4π)ε/Γ(1 − ε).

The contribution of the virtual diagrams is

σV = δ(1 − z)

"
1 +

αS

2π
CF

 
µ2

Q2

!ε

c′Γ

“
− 2

ε2
− 3

ε
− 6 + π2

”#

c′Γ = cΓ + O(ε3)
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Adding it up we get in dim-reduction

σR+V =
αS

2π
CF

 
µ2

Q2

!ε

cΓ

"“2π2

3
− 6
”
δ(1 − z) − 2

ε
Pqq(z) − 2(1 − z)

+ 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

The divergences, proportional to the branching probability , are universal.

We will factorize them into the parton distributions. We perform the mass

factorization by subtracting the counterterm

2
αS

2π
CF

"
−cΓ

ε
Pqq(z) − (1 − z) + δ(1 − z)

#

(The finite terms are necessary to get us to the MS-scheme).

σ̂ =
αS

2π
CF

"“2π2

3
−8
”
δ(1−z)+4(1+z2)

h ln(1 − z)

1 − z

i

+
−2

1 + z2

(1 − z)
ln z+2Pqq(z) ln

Q2

µ2

#

Similar correction for incoming gluons.
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Application to W,Z production

Agreement with NLO theory is good.

LO curves lie about 25% too low.

NNLO results are also known and lead to a further modest (4%) ncrease at the

Tevatron.
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General calculational method for NLO
Direct integration is good for the total cross section, but for differential distributions,

(to which we want to apply cuts), we need a Monte Carlo method.

We use a general subtraction procedure at NLO.

at NLO the cross section for two initial partons a and b and for m outgoing partons,

is given by

σab = σLO
ab + σNLO

ab

where

σLO
ab =

Z

m

dσB
ab

σNLO
ab =

Z

m+1
dσR

ab +

Z

m

dσV
ab

the singular parts of the QCD matrix elements for real emission, corresponding to

soft and collinear emission can be isolated in a process independent manner

Collider PhysicsLecture IV: W and Z production at NLO – p.17/35



Calculational method (cont)

One can use this the construct a set of counterterms

dσct =
X

ct

Z

m

dσB ⊗
Z

1
dVct

where dσB denotes the appropriate colour and spin projection of the Born-level

cross section, and the counter-terms are independent of the details of the process

under consideration.

these counterterm cancel all non-integrable singularities in dσR, so that one can

write

σNLO
ab =

Z

m+1
[dσR

ab − dσct
ab] +

Z

m+1
dσct

ab +

Z

m

dσV
ab

The phase space integration in the first term can be performed numerically in four

dimensions.

Collider PhysicsLecture IV: W and Z production at NLO – p.18/35



Matrix element counter-event for W production

In the soft limit p5 → 0 we have

|M1(p1, p2, p3, p4, p5)|2 = g2CF
p1 · p2

p1 · p5 p2 · p5
|M0(p1, p2, p3, p4)|2

Eikonal factor can be associated with radiation from a given leg by partial

fractioning

p1 · p2

p1 · p5 p2 · p5
= [

p1 · p2

p1 · p5 + p2 · p5
][

1

p1 · p5
+

1

p2 · p5
]

including the collinear contributions, singular as p1 · p5 → 0, the matrix element for

the counter event has the structure

|M1(p1, p2, p3, p4, p5)|2 =
g2

xap1 · p5
P̂qq(xa)|M0(xap1, p2, p̃3, p̃4)|2

where 1 − xa = (p1 · p5 + p2 · p5)/p1 · p2 and P̂qq(xa) = CF (1 + x2)/(1 − x)
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Subtraction method for NLO

For event q(p1) + q̄(p2) → W+(ν(p3) + e+(p4)) + g(p5) with p1 + p2 =
P5

i=3 pi

generate a counter event q(xap1) + q̄(p2) → W+(ν(p̃3) + e+(p̃4)) and

xap1 + p2 =
P4

i=3 p̃i with 1 − xa = (p1 · p5 + p2 · p5)/p1 · p2.

A Lorentz transformation is performed on all j final state momenta

p̃j = Λµ
ν pν

j , j = 3, 4 such that p̃µ
j → pµ

j for p5 collinear or soft.

The longitudinal momentum of p5 is absorbed by rescaling with x.

The other components of the momentum, p5 are absorbed by the Lorentz

transformation.

In terms of these variables the phase space has a convolution structure,

dφ(3)(p1, p2; p3, p4, p5) =

Z 1

0
dx dφ(2)(p2, xp1; p̃3, p̃4)[dp5(p1, p2, x)]

where

[dp5(p1, p2, xa)] =
ddp5

(2π)3
δ+(p2

5)Θ(x)Θ(1 − x)δ(x − xa)
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If ki is the emitted parton, and pa, pb are the incoming momenta, define the shifted
momenta

ekµ
j = kµ

j − 2kj · (K + eK)

(K + eK)2
(K + eK)µ +

2kj · K
K2

eKµ ,

where the momenta Kµ and eKµ are,

Kµ = pµ
a + pµ

b
− pµ

i , eKµ = epµ
ai + pµ

b
.

Since 2
P

j kj · K = 2K2 and 2
P

j kj · (K + eK) = 2K2 + 2K · eK = (K + eK)2

the momentum conservation constraint in the m + 1-parton matrix

pµ
a + pµ

b
−
X

j

kµ
j − pµ

i = 0 .

implies

epµ
ai + pµ

b
−
X

j

ekµ
j = 0 .
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Note also that the shifted momenta can be rewritten in the following way:

ekµ
j = Λµ

ν(K, eK) kν
j ,

Λµ
ν(K, eK) = gµ

ν − 2(K + eK)µ(K + eK)ν

(K + eK)2
+

2 eKµKν

K2
,

the matrix Λµ
ν(K, eK) generates a proper Lorentz transformation on the final-state

momenta.

If the emitted parton has zero transverse momenta, the Lorentz transformation

reduces to the identity.
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Why NLO?

Calculation of NLO corrections, give a better prediction for the rate.

Extra radiation can modify kinematic distributions.
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MCFM overview John Campbell and R.K. Ellis

Parton level cross-sections predicted to NLO in αS

pp̄ → W±/Z pp̄ → W+ + W−

pp̄ → W± + Z pp̄ → Z + Z

pp̄ → W± + γ pp̄ → W±/Z + H

pp̄ → W± + g? (→ bb̄) pp̄ → Zbb̄

pp̄ → W±/Z + 1 jet pp̄ → W±/Z + 2 jets

pp̄(gg) → H pp̄(gg) → H + 1 jet

pp̄(V V ) → H + 2 jets pp̄ → t + X

pp → t + W

⊕ less sensitivity to µR, µF , rates are better normalized, fully differential

distributions.

	 low particle multiplicity (no showering), no hadronization, hard to model

detector effects
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MCFM:examples

(W+2 jet)/(W+1 jet)
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MCFM examples

Production of a mH = 120 GeV Higgs, using effective Lagrangian HGµνGµν ,

obtained in heavy top limit.

Cross sections for Higgs+anything or Higgs+1 jet+anything are the same.

Radiation probability is one, and NLO is clearly inadequate.

what is needed is a combination of NLO and shower Monte-Carlo, (MC@NLO)

Collider PhysicsLecture IV: W and Z production at NLO – p.26/35



NLO: Schematic description

A schematic description of a NLO calculation is as follows.

 
dσ

dx

!

B

= Bδ(x)

 
dσ

dx

!

V

= a

 
B

2ε
+ V

!
δ(x)

 
dσ

dx

!

R

= a
R(x)

x

In terms of the above the calculation of any observable O can written as

〈O〉 = lim
ε→0

Z 1

0
dxx−2εO(x)

" 
dσ

dx

!

B

+

 
dσ

dx

!

V

+

 
dσ

dx

!

R

#
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Subtraction method
We can isolate the divergent part of the real radiation contribution

〈O〉
R

= aBO(0)

Z 1

0
dx

x−2ε

x
+ a

Z 1

0
dx

O(x)R(x) − BO(0)

x1+2ε
.

The second term does not contain singularities so we can set ε = 0

〈O〉
R

= −a
B

2ε
O(0) + a

Z 1

0
dx

O(x)R(x) − BO(0)

x
.

The NLO prediction using the subtraction method is

〈O〉
sub

= BO(0) + a

»
V O(0) +

Z 1

0
dx

O(x)R(x) − BO(0)

x

–
.
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Toy Monte Carlo

Frixione-Webber

Rewrite the basic NLO formula in a different which allows simpler matching with

the Monte Carlo:

〈O〉
sub

=

Z 1

0
dx

»
O(x)

aR(x)

x
+ O(0)

„
B + aV − aB

x

«–
.

Introduce Sudakov form factor for the toy model

∆(x1, x2) = exp

»
−a

Z x2

x1

dz
Q(z)

z

–
,

where Q(z) is a radiation function with the following general properties:

0 ≤ Q(z) ≤ 1, lim
z→0

Q(z) = 1, lim
z→1

Q(z) = 0.

If xs is the energy of the system before the first branching occurs, then ∆(x, xs) is

the probability that no photon be emitted with energy z such that x ≤ z ≤ xs.
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Matching NLO and MC
„

dσ

dO

«

MC@LO

= BIMC(O, 1).

„
dσ

dO

«

naive

=

Z 1

0
dx

"
IMC(O, xM(x))

aR(x)

x
+ IMC(O, 1)

„
B + aV − aB

x

«#
.

This equation suggests the following procedure:

Pick at random 0 ≤ x ≤ 1.

Generate an MC event with xM(x) as maximum energy available to the photon in

the first branching; attach to this event the weight wEV = aR(x)/x.

Generate another MC event (a “counter-event”) with xM = 1; attach to this event

the weight wCT = B + aV − aB/x.

Repeat the first three steps N times, and normalize with 1/N .

This procedure fails, since the weights wEV and wCT diverge as x → 0.
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Modified subtraction method

„
dσ

dO

«

msub

=

Z 1

0
dx

"
IMC(O, xM(x))

a[R(x) − BQ(x)]

x

+IMC(O, 1)

„
B + aV +

aB[Q(x) − 1]

x

«#
.

We subtract and add the quantities

IMC(O, 1)
aBQ(x)

x
, IMC(O, xM)

aBQ(x)

x

The two terms involving Q(x) are not identical, so this is not a subtraction in the

usual sense of an NLO computation.

The two terms do not contribute to the observable O at O(a), because they are

compensated by terms in the parton shower BIMC(O, 1)
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Expansion to O(αS)
Expansion of Monte Carlo piece is

IMC = (1 − a

Z 1

x0

dt
Q(t)

t
δ(O − O(0)) + a

Z 1

x0

dt
Q(t)

t
δ(O − O(t)) + O(a2)

Insertion of this piece in the modified Monte-Carlo formula gives

„
dσ

dO

«

msub

=

Z 1

0
dx

"
δ(O − O(x))

a[R(x) − BQ(x)]

x

+δ(O − O(0))

„
B + aV − aB

x

«

+aBδ(O − O(0))

„
Q(x)

x
−
Z 1

x0

dt
Q(t)

t

«

+aB

Z 1

x0

dtδ(O − O(t))
Q(t)

t

#
+ O(a2).
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Expansion (continued)

Collecting terms we obtain the starting formula for a NLO correction, plus power

suppressed terms which are anyway not controlled in the Monte Carlo

„
dσ

dO

«

msub

=

Z 1

0
dx

"
δ(O − O(x))

aR(x)

x
+ δ(O − O(0))

„
B + aV − aB

x

«#

+ aB

Z x0

0
dx

Q(x)

x

h
δ(O − O(0)) − δ(O − O(x))

i
+ O(a2).

It can also be shown that the normal summation of branching logarithms is not

compromised by this procedure.
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Asymmetry in top production Frixione,Nason,Webber

Example of tt̄-production using MC@NLO

NLO curve (in blue, dotted).
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Conclusions
NLO formulation of QCD processes gives better information about normalization,

and less dependence on unphysical scales.

Matching with Monte Carlo can be implemented.

Much remains to be done

? The NLO corrections which necessary for normalization are unknown for

many of the most interesting processes. 2 → 2 processes are known, some

2 → 3 processes, one or two 2 → 4 processes.

? MC@NLO is known only for a very limited set of processes, namely the

hadroproduction of single vector and Higgs bosons, vector boson pairs, heavy

quark pairs, singletop, lepton pairs, and Higgs bosons in association with a W

or Z.
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